Evaluation of the rotation matrices in the basis of real spherical harmonics

نویسندگان

  • Miguel A. Blanco
  • M. Flórez
  • M. Bermejo
چکیده

Rotation matrices (or Wigner D functions) are the matrix representations of the rotation operators in the basis of spherical harmonics. They are the key entities in the generation of symmetry-adapted functions by means of projection operators. Although their expression in terms of ordinary (complex) spherical harmonics and Euler rotation angles is well known, an alternative representation using real spherical harmonics is desirable. The aim of this contribution is to obtain a general algorithm to compute the representation matrix of any point-group symmetry operation in the basis of the real spherical harmonics, paying attention to the use of recurrence relationships that allow the treatment of functions with high angular momenta. q 1997 Elsevier Science B.V.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rotation matrices for real spherical harmonics: general rotations of atomic orbitals in space-fixed axes

The angular factors of atomic orbitals are real spherical harmonics. This is independent of the choice of basis function. In the course of molecular electronic structure calculations, numerous rotations of real spherical harmonics are required in a suitably defined space-fixed co-ordinate system. The origin and axes are space-fixed and rotation matrices defined on a basis of spherical harmonics...

متن کامل

Rapid and Stable Determination of Rotation Matrices between Spherical Harmonics by Direct Recursion

Recurrence relations are derived for constructing rotation matrices between complex spherical harmonics directly as polynomials of the elements of the generating3×3 rotation matrix, bypassing the intermediary of any parameters such as Euler angles. The connection to the rotation matrices for real spherical harmonics is made explicit. The recurrence formulas furnish a simple, efficient, and nume...

متن کامل

Efficient and accurate rotation of finite spherical harmonics expansions

Spherical harmonics are employed in a wide range of applications in computational science and physics, and many of them require the rotation of functions. We present an efficient and accurate algorithm for the rotation of finite spherical harmonics expansions. Exploiting the pointwise action of the rotation group on functions on the sphere, we obtain the spherical harmonics expansion of a rotat...

متن کامل

Efficient Spherical Harmonic Evaluation

The real spherical harmonics have been used extensively in computer graphics, but the conventional representation is in terms of spherical coordinates and involves expensive trigonometric functions. While the polynomial form is often listed for low orders, directly evaluating the basis functions independently is inefficient. This paper will describe in detail how recurrence relations can be use...

متن کامل

Determination of Fiber Direction in High Angular Resolution Diffusion Images using Spherical Harmonics Functions and Wiener Filter

Diffusion tensor imaging (DTI) MRI is a noninvasive imaging method of the cerebral tissues whose fibers directions are not evaluated correctly in the regions of the crossing fibers. For the same reason the high angular resolution diffusion images (HARDI) are used for estimation of the fiber direction in each voxel. One of the main methods to specify the direction of fibers is usage of the spher...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997